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Abstract. Small angle neutron scattering experiments were carried out on D2O on the critical
isochore. Apparatus was used which enabled the control of temperature to ±0.01 K and pressure
to 10 mbar. The corrected scattering data were used to extract values for the correlation length of
the critical density fluctuations, ξ , and the thermodynamic limit of the structure factor, S(0). Both
quantities are found to show divergent power-law behaviour with reduced temperature, and have
exponents ν = 0.62 ± 0.03 and γ = 1.14 ± 0.05, respectively. These results confirm that D2O
belongs to the three-dimensional Ising universality class.

A value of ξ0 = 1.30 ± 0.23 Å was calculated for the characteristic correlation length of
D2O, a result that compares favourably with that inferred from thermodynamic data and calculated
theoretically.

1. Introduction

The critical point of a single-component classical fluid is defined by the critical temperature,
Tc, pressure, pc, and density, ρc, and represents the thermodynamic state at which coexisting
liquid and gas phases become indistinguishable. Above the critical temperature there can
be no liquid–gas coexistence. The critical region of fluids has been the focus of much
interest in the past few decades [1]. Theoretical studies based on the renormalization group
have been successful in classifying the critical behaviour of various general fluids [2], and
experimental work has provided useful information which has helped to characterize many
material properties, and enable critical fluids to be used in commercially important processes
such as the decaffeination of coffee and the optimization of chemical reactions [3].

The critical point denotes a singularity in the thermodynamic behaviour. When the critical
point is approached from any direction on the phase diagram, divergent behaviour is shown
in those thermodynamic quantities that are second-order derivatives of the free energy. The
equation of state, asymptotically close to the critical point, takes a simple scaling form in
terms of reduced state variables. The critical exponents describing this scaling behaviour
are found to be a characteristic of the universality class to which the fluid belongs. The
classification depends on the general type of interaction between particles and not on the
chemical composition of the fluid [1].

Of particular relevance to the work described in this paper is the phenomenon of critical
opalescence which can be spectacularly demonstrated in the scattering of light on a few systems
at near-ambient conditions [4]. This phenomenon is caused by the thermal density fluctuations
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of atoms or molecules in a system near its critical point. As the critical point is approached
along the critical isochore, the correlation length, ξ , associated with the collective behaviour of
the atoms or molecules diverges according to a particular power law relationship. For example,
in the case of a dipolar fluid in three dimensions, ξ diverges with a critical exponent ν = 0.630,
consistent with the 3D Ising universality class [1, 5].

It is with this background that we have undertaken a small angle neutron scattering (SANS)
experiment to determine the critical opalescence in heavy water. Besides the obvious interest
in water as a universal solvent medium for many biological and chemical processes, it can
also be regarded as the prototypical hydrogen bonding liquid. Our motivation therefore is
to extend our knowledge of the critical behaviour of this substance and confirm previous
critical point work, which shows that water is a member of the 3D. Ising universality class
[5]. In particular, our experimental results below provide the first direct determination of
the characteristic correlation length and critical exponent of the fluid. A secondary aspect
of our work is to assess the feasibility of studying opalescence in salt–water mixtures and
ionic systems generally. Recent experiments on turbulence in ionic salts shows the intriguing
situation of a delayed crossover from the Ising type of power-law behaviour close to the critical
point to mean field far from the critical point [6]. One advantage of working on water is that the
phase diagrams of both water (H2O) and heavy water (D2O) are well established, and several
experimental properties have been measured in the critical regime of water [5, 7]. Kamgar-Parsi
et al [7] previously determined the following critical parameters for D2O:Tc = 643.89±0.10 K,
Pc = 216.71 ± 0.05 bar, ρc = 356.2 ± 2.5 kg m−3.

There are three possible scattering methods that can, in principle, be used to study critical
opalescence: light scattering, small angle x-ray scattering (SAXS) and small angle neutron
scattering (SANS). We have chosen the SANS technique for the range of momentum transfer
that can be attained, the less restrictive constraints on the size and material of the sample
container and the sensitivity to correlations in the structure of materials containing elements
with low atomic numbers.

The choice of D2O over H2O is made purely on the basis of the preferential neutron
scattering properties of the former that enables more accurate determination of the structure.
In terms of the underlying physics we would anticipate no difference in critical behaviour of
these two isotopically different materials.

The theory of critical fluctuations, due to Ornstein–Zernike, predicts the following
equation for the structure factor [1] in terms of momentum transfer,Q, defined by the equation
Q = 4π(sin θ)/λ, where θ is the scattering angle and λ is the incident wavelength:

S(Q) = S(0)/(1 + ξ 2Q2). (1)

In this theory, ξ is the correlation length of the system. The equation is valid for small
momentum transfers (Q � ξ−1). Very close to the critical point, this condition is not accessible
to experiment and equation (1) must be replaced by an expression featuring the Fisher-type
decay of the correlations, described below.

For a pure one-component fluid, S(0) is simply related to the isothermal compressibility,
κT = −V −1(∂V/∂p)T :

S(0) = kBT nκT (2)

where n is the microscopic atomic number density [8].
Hence, by interpreting experimental structure factors in terms of equation (1) and equation

(2) we obtain quantities for the correlation length and isothermal compressibility, both of which
show divergent power-law behaviour in the critical regime. In particular, on the critical isochore
above Tc the following power-law relations are expected:

ξ = ξ0t
−ν (3)
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κT = p−1
c �t

−γ (4)

where γ, ν are critical exponents (an indication of the universality class of the fluid); ξ0, � are
amplitudes specific to the fluid and t is the reduced temperature:

t = (T − Tc)/Tc.
It can be seen from equation (1) that plotting S(Q)−1 againstQ2 will give a straight line. When
experimental data are shown in this way, it is known as an Ornstein–Zernike plot.

Since the correlation length is expected to diverge according to equation (3), for small
values of reduced temperature, t , the condition of validity (Q � ξ−1) for the Ornstein–Zernike
equation may not be met by all momentum transfers in a given experimental range. In this
regime, equation (1) must be replaced by a more accurate description of the decay of the
correlations in real space. The correct form of this decay, at the critical point, is characterised
by the Fisher exponent, η [9], which is defined in terms of the exponents in equation (3) and
equation (4) by the relation γ = ν(2 − η).

The value for η is of the order of 0.02, and its determination represents a major challenge to
the experimentalist. An experiment to determine η by SANS methods, such as that of Damay
et al [10], must be performed far from the regime in which the Ornstein–Zernike equation
is valid. In the present experiment our main objective is to measure the critical amplitudes
and exponents in equation (3) and equation (4). Consequently, we have chosen to collect data
predominately in a range of t and Q (0.0003 < t < 0.02, 0.008 Å−1 < Q < 0.068 Å−1) in
which the Ornstein–Zernike equation is valid, thereby allowing the determination of both ξ0

and S(0). This means that our data are not suitable for an extraction of the value of η.
A scaled equation of state for D2O in the critical region has previously been defined by

Kamgar-Parsi et al [7] with reference to thermodynamic measurements. We may use the
properties of this equation of state, asymptotically close to the critical point, to predict the
power-law behaviour of ξ and κT . In the case of the description of the correlation length we
must apply the hypothesis of two-scale factor universality [1]. This hypothesis enables us to
predict ξ0 from the singular component of the free energy density in the equation of state [7],
via the dimensionless theoretical constant R+

ξ = 0.27 ± 0.01, cited in Privman et al [11]. The
predictions for both amplitudes, with the associated exponents from [7], are as follows:

ξ0 = 1.28 Å ν = 0.630

kBTcncp
−1
c � = 0.802 γ = 1.242

where nc is the atomic number density at the critical point.

2. Sample control equipment

Figure 1 shows a layout of the apparatus used and includes an expanded view of the sample
container. The pressure cell was designed to minimize temperature gradients across the sample.
The beam passes through an aperture in the titanium sample container, which has a volume of
2.2 cm3, a 2 mm path-length and 3mm windows. This is housed in an Inconel body (a nickel
superalloy), which contains the heating and thermometry system.

A two-stage heating system was employed with the majority of heating power delivered
at the circumference of the cell and two small cartridge heaters fitted in the cell body for fine
temperature control. A four-wire platinum resistance thermometer fed to an AC bridge was
used to measure temperature.

In order to contain the sample above the critical pressure we used a cell many times the
mass of the sample. Due to the difficulty in placing a thermometer near to the sample in the
neutron beam, there was a large systematic error in the measurement of sample temperature
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Figure 1. (a) Exploded view of sample container. (b) Schematic view of sample environment.

(about 0.17 K) although the actual temperature gradient across the sample was small (about
0.07 K). Moreover, time constraints required us to ramp the sample temperature continually,
rather than take a series of points at steady state. The rate of heating strongly affected the
difference between measured temperature and sample temperature. Such systematic errors
prevented us from obtaining an independent measurement of the absolute critical temperature.
Instead, we report our findings in terms of a reduced temperature, t , that is consistent and
reproducible with measurements of the sample pressure, previous volumetric measurements
and the sample scattering itself. See section 5 for more details on the calculation of t .
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The sample volume was connected to the external pressurising system by a 1/16 inch o.d.
(1/64 inch i.d.) high-pressure capillary tube. This enabled a pressure transducer, external to
the cell, to make continual readings of the sample pressure. A dead-weight tester that used oil
as a pressuring fluid applied pressure to the D2O system (via an intermediate separator piston).
The separator and dead-weight tester could be isolated from the sample volume and pressure
transducer by closing a needle-type pressure valve.

3. Data acquisition

Prior to the SANS experiments on the critical isochore it was necessary to set precisely the
density of the fluid. We found it best to locate the critical density by carefully setting the
temperature and pressure just above the point at which the sample scatters most strongly,
then sealing the cell. This required precise control of temperature (±0.01 K) and pressure
(±10 mbar). By definition, a fluid close to the critical point is highly compressible so a dead-
weight tester is employed to apply pressure. This device defines the pressure in the system by
the principle of applying a known weight to a piston of known area.

Small angle neutron scattering measurements were taken on D22 (ILL, France) at a
wavelength of λ = 6 Å, and a sample–detector distance of 10 m, giving an observable range
of momentum transfer from 0.008 Å−1 to 0.068 Å−1. The D2O sample was 99.9% atomic
purity supplied by Sigma. The temperature of the system was varied continuously at a rate
of approximately 0.1 K min−1. Data were collected in 30 s acquisitions. We found that
this gave sufficiently accurate data for the determination of the correlation length, ξ(t) and
long-wavelength limit of the structure factor, S(0, t), as a function of reduced temperature, t .

4. Data analysis

The neutron counts measured at the 2D multidetector were grouped into incremental ranges
of scattering angle, θ , which were each denoted by a value ofQ, the mean elastic momentum
transfer calculated for that range of angles.

The scattering measurements taken were: the sample and pressure cell at each state
point, ISC(Q, t); the empty pressure cell, IC(Q); a 1 mm path-length H2O sample at ambient
conditions with fused quartz container, IH2O+SiO2(Q); and the empty fused quartz container,
ISiO2(Q). All measurements were normalized to the beam monitor counts.

The following expression was assumed for ISC(Q, t) in terms of S(Q, t), the structure
factor at reduced temperature, t , convoluted by the instrument resolution function:

ISC(Q, t) = #(Q)

(
AS,SCND2O

σcoh

4π
S(Q, t) +MSC

)
+
AC,SC

AC,C
IC(Q) (5)

where ND2O is the total number of D2O molecules in the neutron beam (calculated from
the expected density of D2O at the critical point); σcoh is the coherent scattering cross
section per atom of D2O (defined in terms of the mean scattering lengths of the nuclei,
σcoh = 4π{ 2

3 b̄D + 1
3 b̄o}2); AS,SC , AC,SC and AC,C are the relevant Paalman–Pings attenuation

coefficients [12]; and MSC is an isotropic component of the scattering cross-section due to
multiple and incoherent scattering effects. The distribution#(Q) relates the measured counts
(over the range of scattering angles corresponding to momentum transferQ) to the scattering
cross section. It is therefore a product of three quantities: the average intensity of the neutron
beam at the sample, of the average efficiency of the neutron detector at these scattering
angles, and of the solid angle comprising this range of scattering angles. We determined
this distribution by treating the H2O scattering as a secondary calibration standard.
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The reasonable assumption that the Paalman–Pings attenuation coefficients at low Q,
are constant with scattering angle enabled us to calculate the attenuation corrections from
measurements of the transmitted intensity. For example, in the case of the measurement of
ISC(Q, t), the overall attenuation of the sample single-scattering, AS,SC , and container single-
scattering, AC,SC , are identical and equal to the fraction of neutrons transmitted by the sample
and container.

Similarly, by reference to transmission measurements, the scattered intensity from the
water calibration sample was corrected for the contribution of the silica container. The resulting
distribution, IH2O(Q) was a measure of the detector response from the uniform scattering of
natural water.

4.1. Normalization

In order to obtain absolute measurements of the structure factor, S(Q, t), from D2O, the H2O
sample was treated as a secondary calibration standard to the incoherent scattering cross-
section of vanadium. Energy-resolved neutron scattering measurements from an identical
water sample and a vanadium slab, performed by Ghosh and Rennie [13], were employed for
this purpose. With a knowledge of the energy distribution of scattered neutrons from the water
sample (relative to the predominantly elastic scattering from vanadium) and of the relative
energy-dependent efficiency of the D22 3He-detector, it was possible to estimate the response
of the D22 detector.

The constant, C, relating the level of scattering from a 1 mm H2O sample to an
absolute scattering cross section, was obtained by interpolating results from inelastic scattering
measurements at the incident wavelengths λ = 5 Å and λ = 8 Å, and at constant scattering
angle θ = 4◦. This permitted us to define the calibration function, #(Q), as follows:

#(Q) = (CNH2O)
−1IH2O(Q)

where C = 8.01 barn sr−1 (±10%) and NH2O is the total number of water molecules in the
beam.

4.2. Instrumental resolution

The RMS width of the instrument resolution function, ,Q(Q), is assumed to contain a
Q-independent contribution from the geometry of the instrument layout and a Q-dependent
contribution from the acceptance of the wavelength selector. We measured the first contribution
from the profile of the attenuated transmitted beam at the detector, with a full-width-half-
maximum value:

,Q0 = 4.7 × 10−3 Å−1(FWHM).

The incident wavelength distribution is obtained from the D22 instrument specifications [14],
derived originally from time-of-flight measurements, ,λ/λ = 0.1 (FWHM). From these
values we obtain the resulting expression for the width of the resolution function:

(8 ln 2),Q2(Q) = (,Q0)
2 + (Q,λ/λ)2.

We use the following expression, given in Pedersen et al [15], for a Gaussian-profile resolution
function at a flat-plate detector, in radially regrouped data sets:

R(Q′,Q) = Q′

,Q2(Q)
exp

(
−Q

′2 +Q2

,Q2(Q)

)
I0

(
Q′Q

,Q2(Q)

)

where I0(x) is the modified Bessel function of first kind and zero order.
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This gives the following expression for the Ornstein–Zernike equation convoluted with
the instrument resolution function:

S(Q, t) =
∫ Qmax

0
R(Q′,Q)

S(0, t)

1 + ξ(t)2Q′2 dQ′ (6)

which must be integrated numerically.

4.3. Curve-fitting procedure

The experimental scattering data ISC(Q, t) at each state point, t , was modelled with equation
(5) and equation (6). Least-squares curve fitting procedures were performed with ξ(t), S(0, t)
and MSC as the free parameters. An iterative and self-consistent process was employed to
restrict the range of momentum transfer treated by the fitting procedure to 0 < Q < x/ξ(t),
where x was chosen to be 4. We also verified that other values of x in the range 1 < x < 8
did not alter significantly the results obtained, except that reducing the number of data points
increased noise in the values of the fitted parameters.

5. Results and discussion

Examples of the experimental structure factor, S(Q; t), with correct background subtraction,
are shown in figure 2. It is clear that for these results the Ornstein–Zernike equation provides
a good description of the scattered intensity.

The temperature dependences of the parameters in equation (1) are shown in figures 3
and 4. The reduced temperature, t , was calculated from an assumed critical temperature,
comprising the systematic errors mentioned above, that produced the closest fit to simple
power-law behaviour in the variable ξ(t). However, it was found that a range of assumed
critical temperatures (approximately 0.1 K) could be chosen to give an acceptable fit; each
giving a corresponding range of critical exponents and amplitudes. This enabled us to estimate
additional experimental errors due to our inability to determine the exact value of the critical
point that corresponds to the disappearance of the meniscus on phase coexistence. It was also
noted that the critical temperature obtained by the criterion of obtaining the best fit to a power
law in ξ(t) does not appear to coincide with the temperature at which the maxima in ξ(t) and
S(0, t) were observed. As can be seen from figures 3 and 4, both parameters appear to have
maxima at t = 0.0003 rather than t = 0. Consequently, only at values of t > 0.0008 do
power-law equations appear to provide a good description of the behaviour of ξ(t) and S(0; t).
This discrepancy may be an artefact caused by limitations due to temperature gradients in the
container with the result that we are unable to resolve state points with values t < 0.0008.

From the representation of the temperature dependence of the correlation length and long
wavelength limit of the structure factor in equation (3) and equation (4) we obtain values for
the critical amplitudes as follows: ξ0 = 1.30 ± 0.23 Å, kBTcncp−1

c � = 1.20 ± 0.32; and for
the critical exponents as: ν = 0.62 ± 0.03, γ = 1.14 ± 0.05. This may be compared with
the values ν = 0.630, γ = 1.242, from theory; kBTcncp−1

c � = 0.802 from the Ising-like
scaled equation of state due to Kamgar-Parsi et al [7]; and ξ0 = 1.28 Å from the hypothesis of
two-scale factor universality [11] and the scaled equation of state. Clearly, the parameters we
obtained for the power-law description of ξ(t) are in excellent agreement with the theoretical
predictions based on the scaled equation of state. We have therefore shown that the predictions
of the hypothesis of two-scale factor universality [11] are valid on the critical isochore. On
the other hand, the parameters obtained for the power-law behaviour of S(0, t) on the critical
isochore are not in such good agreement. This is due to errors, which could be as large as
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Figure 2. (a) Structure factors S(Q, t) along the critical isochore at five state points: (A) t =
0.001 01, (B) t = 0.002 14, (C) t = 0.005 12, (D) t = 0.010 97, (E) t = 0.018 97. (b) The
corresponding Ornstein–Zernike plots of data in figure 2(a).
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Figure 3. Temperature dependence of S(0, t) with curves of power-law behaviour obtained from
this experiment (solid line) and from a 3D-Ising-like scaled equation of state [7] (dashed line).
(a) Linear axis in t . (b) Logarithmic axis in t .
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30%, introduced in extrapolating the scattering data toQ = 0, inaccuracy in the normalization
process and inconsistency between the integrated flux on the sample and calibration standard.

Finally, at this level of accuracy, we observed no significant deviation from the Ornstein–
Zernike equation. This is unsurprising since such deviations are characterized by the exponent
η = γ /ν−2, which is expected to be small and of the order of 0.02 in the 3D-Ising universality
class. Experiments to determine such a value would require experimental data closer to Tc and
over a range in Q that would enable one to determine deviations in the results from a purely
Lorentzian form. Damay and co-workers [16] have shown that such experiments are at the
limit of what is possible by SANS methods.

6. Conclusions

We have demonstrated the use of SANS as a sensitive probe of critical fluctuations in D2O.
The results show agreement in the scaling behaviour with that observed in thermodynamic
measurements and as is expected from the theory of critical phenomena [1]. In particular
they show that D2O and therefore by extension H2O belong to the three-dimensional Ising
universality class of materials.

The SANS measurement described here of critical scattering in D2O can readily be
extended to aqueous electrolyte solutions, where one might anticipate some intriguing
behaviour, such as has recently been observed in ionic fluids [6]. We have demonstrated that
measurements of the critical exponents can be obtained without initial assumptions about the
universality class. The experimental methods presented here could therefore provide relevant
information about critical scaling behaviour in other aqueous solutions.
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Addendum

While this paper was in the review stage prior to publication, a SANS study of D2O near its
critical point was published by the Saclay Group [17]. The data collected by this group are
in the Q-range 0.07 � Q(Å−1) � 0.36, and are complementary to those in the paper above.
Being at largerQ, the authors used a parametric fitting procedure based on the Fisher Langer
expansion to determine suitable values for ξ0, assuming Ising-like behaviour. Overall there is
excellent agreement between the two sets of information.
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